CBCS SCHEME

Library, Managert

15MATDIP41

Fourth Semester B.E. Degree Examination, July/August 2021 Additional Mathematics – II

USN

	Tir	ne:	3 hrs. Max. 1	Marks: 80
			Note: Answer any FIVE full questions.	
s. : treated as malpractice.	1	a.	Determine the rank of the matrix $A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ by applying elements of the matrix $A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ by applying elements of the matrix $A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$	mentary row
			transformations. $\begin{bmatrix} 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$	(05 Marks)
l bc			Γ1 4	,
ank pa 50, wil		b.	Find the inverse of the matrix $\begin{bmatrix} 2 & 3 \end{bmatrix}$ using Cayley Hamilton theorem.	(05 Marks)
ld gr S = S		c.	Solve by Gauss elimination method	
ainir 42-8	~		2x + y + 4z = 12	
rem cg,			4x + 11y - z = 33	
the			8x - 3y + 2z = 20	(06 Marks)
ics on 1s wri				
s lin ation	2	0	Find the eigen values of A - 2 6 - 2	(05 Marks)
cros	Z	a.	Find the eigen values of $\mathbf{A} = \begin{bmatrix} -2 & 0 & -2 \end{bmatrix}$	(05 Marks)
nal I /or				
liago r ano		b.	Solve the system of equations by Gauss elimination method.	
aw c			x + y + z = 9	
y dr evalı			x - 2y + 3z = 8	
soril l to ($2\mathbf{x} + \mathbf{y} - \mathbf{z} = 3$	(06 Marks)
npul		c.	Find the rank of the matrix by reducing it to echelon form.	
con n, ap				
crs, ation				(05 Marks)
unsw tific				(00 110110)
our a	8		0 1 1 1	
ig y g of				
aling			$d^2 y dy z d$	
omp	3	a.	Solve $\frac{y}{dx^2} - 4\frac{y}{dx} + 5y = 0$ subject to $\frac{y}{dx} = 2$, $y = 1$ at $x = 0$.	(05 Marks)
On c Any		b.	Solve $(4D^4 - 4D^3 - 23D^2 + 12D + 36)y = 0.$	(05 Marks)
: 1. 2.		C	Solve by the method of variation of parameters $\frac{d^2y}{dt^2} + y = \tan x$.	(06 Marks)
vote		0.	dx ²	
Tur ,				
nport	4	a.	Solve $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = e^{2x} + \cos 2x$.	(05 Marks)
ſI		b.	Solve $y'' + 2y' + y = 2x + x^2$	(05 Marks)
		C	Using the method of undetermined coefficients, solve $v'' - 5v' + 6v = e^{3x} + x$	(06 Marks)
		υ.	1 of 2	

15MATDIP41

(06 Marks)

5 a. Find the Laplace transform of (i)
$$\frac{e^{-at} - e^{-bt}}{t}$$
 (ii) sin 5t cos 2t (05 Marks)

Find the Laplace transform of b.

$$f(t) = \begin{cases} E, & 0 < t < \frac{a}{2} \\ -E, & \frac{a}{2} < t < a \end{cases} \text{ where } f(t+a) = f(t)$$
 (06 Marks)

c. Express $f(t) = \begin{cases} t, & 0 < t < 4 \\ 5, & t > 4 \end{cases}$ in terms of unit step function and hence find L[f(t)]. (05 Marks)

Express $f(t) = \begin{cases} \cos t, & 0 < t < \pi \\ \cos 2t, & \pi < t < 2\pi \end{cases}$ in terms of unit step function and hence find its 6 a. $t > 2\pi$ cos3t,

Laplace transform.

8

- b. Find the Laplace Transform of (i) t sin at (ii) t^5e^{4t} (05 Marks) If $f(t) = t^2$, 0 < t < 2 and f(t + 2) = f(t) for t > 2, find L[f(t)]. (05 Marks) c.
- Find the inverse Laplace Transform of $\frac{2s-1}{s^2+4s+29}$. (05 Marks) 7 a.
 - Find the inverse Laplace transform of $\cot^{-1}\left(\frac{s}{s}\right)$. b. (05 Marks)
 - Solve by using Laplace Transforms $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 4y = e^{-t}$; y(0) = 0, y'(0) = 0. (06 Marks) c.
 - Solve the initial value problem $y'' + 4y' + 3y = e^{-t}$ conditions with y(0) = 1, y'(0) = 1 using a. Laplace Transforms. (06 Marks)
 - Find the inverse Laplace Transform of $\frac{s+2}{s^2(s+3)}$ (05 Marks) b.
 - Find the inverse Laplace Transform of $\log \left[\frac{s^2 + 4}{s(s+4)(s-4)} \right]$ (05 Marks) c.
- A box contains 3 white, 5 black and 6 red balls. If a ball is drawn at random, what is the 9 a probability that it is either red or white? (05 Marks)
 - The probability that a person A solves the problem is 1/3, that of B is 1/2 and that of C is b. 3/5. If the problem is simultaneously assigned to all of them what is the probability that the problem is solved? (05 Marks)
 - c. Three machines A, B and C produce respectively 60%, 30%, 10% of the total number of items of a factory. The percentages of defective output of these machines are respectively 2%, 3% and 4%. An item is selected at random and is found defective. Find the probability that the item was produced by machine C. (06 Marks)

10 State and prove Baye's theorem. a.

- If A and B are events with $P(A \cup B) = \frac{3}{4}$, $P(\overline{A}) = \frac{2}{3}$ and $P(A \cap B) = \frac{1}{4}$, find P(A), P(B)b. and $P(A \cap B)$. (05 Marks)
- Three students A, B, C, write an entrance examination. Their chances of passing arc 1/2, 1/3 C. and 1/4 respectively. Find the probability that

(i) at least one of them passes (ii) all of them pass (iii) at least two of them passes.

(06 Marks)

(05 Marks)